На правах рукописи

Петракова Наталия Валерьевна

ВЛИЯНИЕ УСЛОВИЙ СИНТЕЗА И СПЕКАНИЯ НАНОПОРОШКОВ ГИДРОКСИАПАТИТА НА ФОРМИРОВАНИЕ МИКРОСТРУКТУРЫ И СВОЙСТВ КЕРАМИКИ

Специальность 05.17.11 – Технология силикатных и тугоплавких неметаллических материалов

ΑΒΤΟΡΕΦΕΡΑΤ

диссертации на соискание ученой степени кандидата технических наук Работа выполнена в Федеральном государственном бюджетном учреждении науки Институт металлургии и материаловедения им. А.А. Байкова Российской академии наук.

Научный руководитель:	Доктор технических наук, профессор, член-корреспондент РАН Баринов Сергей Миронович			
Официальные оппоненты:	Доктор технических наук, профессор, Шаяхметов Ульфат Шайзаманович, заведующий кафедрой инженерной физики и фи- зики материалов Федерального государственного бюджетного образовательного учреждения выс- шего профессионального образования Башкир- ский государственный университет			
	Кандидат технических наук, доцент, Сафронова Татьяна Викторовна, старший научный сотрудник кафедры неорганической хи- мии Федерального государственного бюджетного образовательного учреждения высшего профес- сионального образования Московский государ- ственный университет имени М.В. Ломоносова			
Pomulas oppoliticatius:				

Ведущая организация: Федеральное государственное бюджетное учреждение науки Институт общей и неорганической химии им. Н.С. Курнакова Российской академии наук

Защита состоится 22 мая 2014 г. в 14:00 на заседании диссертационного совета Д002.060.04 при Федеральном государственном бюджетном учреждении науки Институт металлургии и материаловедения им. А.А. Байкова Российской академии наук по адресу: 119991, г. Москва, Ленинский проспект, д. 49.

С диссертацией можно ознакомиться в библиотеке института (ИМЕТ РАН) и на сайте ИМЕТ РАН <u>www.imet.ac.ru/</u>. Автореферат диссертации размещен на сайте ИМЕТ РАН <u>www.imet.ac.ru</u> и на сайте ВАК <u>http://vak.ed.gov.ru/</u>.

Автореферат диссертации разослан «_____» апреля 2014 г.

Ученый секретарь диссертационного совета Д002.060.04, кандидат геолого-минералогических наук С.Н. Ивичева

ОБЩАЯ ХАРАКТЕРИСТИКА РАБОТЫ

Актуальность работы

Современный уровень развития медицины и наук о материалах позволяет решить ряд проблем, связанных с лечением нарушений костной ткани, возникающих в результате травм и заболеваний. Нередко хирургические вмешательства приводят к обширным послеоперационным дефектам и, как следствие, к функциональной недостаточности опорно-двигательного аппарата или отдельных органов. Традиционный подход заключается в замещении дефекта кости имплантатом. Главной проблемой при этом является создание материала имплантата, который должен удовлетворять определенным требованиям по биологической, химической и механической совместимости с организмом. Значительные усилия были направлены на разработку керамических материалов на основе гидроксиапатита (ГА) – аналога по фазовому и химическому составу минерального компонента костной ткани человека. Материалы на основе ГА не вызывают отрицательных реакций организма, в отличие от ряда металлов и полимеров, и биологически активны в отношении интеграции с костной тканью. Но известные гидроксиапатитовые керамические материалы не имеют достаточного уровня прочности для того, чтобы нести во многих необходимых случаях физиологические нагрузки с высокой степенью надежности. Поэтому исследования, направленные на совершенствование принципов и технологии создания высокопрочной ГА-керамики, являются по-прежнему актуальными. Значительный вклад в развитие данного направления внесен отечественными (школы ИОНХ РАН, РХТУ им. Д.И. Менделеева, ИМЕТ РАН, Томского политехнического университета, ФНМ МГУ им. М.В. Ломоносова, ИХС РАН и др.) и зарубежными исследователями. В качестве одного из наиболее перспективных подходов для достижения высокопрочного состояния керамики рассматривается переход от микро- к наноструктурированности. Однако, несмотря на интенсивные исследования в области технологии ГА-керамики, многие задачи, связанные с синтезом нанопорошков и с выявлением происходящих в процессе их обработки структурных и морфологических изменений и влиянием этих процессов на формирование микроструктуры и механических свойств керамики, остаются пока еще не решенными. Получение ответов на вопросы, возникающие при решении указанных задач, могли бы привести к совершенствованию технологии ГА-керамики для достижения повышенной по сравнению с известными аналогами прочности. Это и явилось основанием для постановки настоящего исследования.

<u>Целью работы</u> является развитие физико-химических основ технологии керамики из нанопорошков гидроксиапатита и установление технологических параметров получения высокопрочной ГА-керамики.

Задачи работы:

1. Установление влияния условий синтеза порошков ГА методами осаждения из растворов и механохимической активации на их дисперсность и морфологию; выявление условий синтеза наноразмерных порошков с заданными характеристиками.

2. Исследование процессов уплотнения при одноосном полусухом прессовании, в том числе с использованием гидростатического прессования. Изучение влияния дисперсности порошков и давления прессования на показатели относительной плотности прессовок.

3. Установление влияния условий спекания на формирование микроструктуры и механических свойств керамики; выявление влияния параметров микроструктуры на прочностные характеристики.

Научная новизна результатов работы заключается в следующем.

1. Установлено, что изменение температуры синтеза из водных растворов нитрата кальция и гидрофосфата аммония от 0 до 80 °C, позволяет получать ГА с размером частиц от 14 до 40 нм, при этом морфология изменяется от изометрической до игольчатой. Показано, что формирование апатитовой фазы при старении осадка в маточном растворе происходит через образование фазы бета-трикальцийфосфата или в его присутствии.

2. Выявлены закономерности влияния условий механохимического синтеза ГА из смеси оксида кальция и гидрофосфата аммония и последующего его старения в маточном растворе на формирование фазового состава и морфологию продуктов. Установлено образование низко закристаллизованного гидроксиапатита с промежуточным термически неустойчивым соединением (аммоний кальций фосфат гидрат) на стадии добавления воды в смесь. Продолжительность старения оказывает незначительное влияние на размеры и морфологию частиц ГА.

3. Выявлено изменение морфологии частиц порошков от игольчатой до ограненной гексагональной, увеличение размеров от нанометрового (15 нм) до микронного (320 нм) и снижение уровня решеточных деформаций с ростом температуры их прокаливания от 400 до 1000°С. Зависимость усадки и прочности керамики от температуры термообработки порошков немонотонная; максимум прочности достигается для керамики, изготовленной из порошков, термообработанных при температуре 700 °С, что связано с повышением устойчивости к рекристаллизации при спекании.

4. Показано, что интенсификация процессов уплотнения и упрочнения нанокристаллических порошков ГА при спекании может быть достигнута при использовании дополнительного гидростатического прессования (увеличение относительной плотности прессовок на 10-13 %), горячим прессованием при пониженных температурах (снижение до 200 °C) или обжигом в вакууме. При этом достигается однородная мелкокристаллическая структура (размер кристаллов 80-150 нм), повышается плотность керамики в среднем на 20%, увеличивается прочность при изгибе в 2-3 раза (до 170 МПа) и микротвердость в 4-5 раз (до 5,6 ГПа).

<u>Практическая значимость работы:</u>

1. Установлены технологические условия синтеза нанодисперсных порошков ГА методом механохимической активации. Метод характеризуется высокой производительностью, простотой аппаратурного обеспечения и меньшим влиянием на результаты технологических факторов, таких как время старения, по сравнению с традиционно применяемыми методами осаждения из растворов. Метод используется в экспериментальном производстве на базе ИМЕТ РАН.

2. Рекомендованы технологические условия для получения плотной ГАкерамики с мелкозернистой однородной микроструктурой и повышенной до 170 МПа прочностью при изгибе; такие материалы могут быть использованы в качестве имплантатов, устойчивых к биорезорбции в организме человека.

На защиту выносятся:

1. Результаты исследований по установлению условий получения порошков гидроксиапатита с контролируемыми дисперсностью, в том числе наноразмерных, и морфологией: метод синтеза, температура реакционной среды, время и продолжительность старения осадка в маточном растворе, термическая обработка.

2. Результаты изучения особенностей формирования микроструктуры и механических свойств керамики на основе ГА в зависимости от дисперсности и морфологии порошков, от условий формования и спекания.

Публикации и апробация работы:

Основные результаты работы изложены в 23 публикациях, включая 9 статей в периодических журналах, входящих в перечень изданий, рекомендованных ВАК, 10 – в сборниках трудов российских конференций, 3 – в сборниках трудов международных конференций, 1 – патент. Результаты, входящие в работу, представлены на 13 конференциях в виде устных и стендовых докладов, в том числе Всероссийское совещание «Биокерамика в медицине» Москва, ИПК РАН, 2006; международная конференция «Керамика, клетки и ткани» Италия, Фаэнца, 2007, 2009; международная конференция «Деформация и разрушение порошковых материалов» Словакия, Стара Лесна, 2008; Всероссийская конференция «Функциональные наноматериалы и высокочистые вещества» с элементами научной школы для молодежи, 2009; Всероссийская конференция «Нанотехнологии в онкологии» Москва, МНИОИ им П.А. Герцена, 2010; I Международная конференция «Функциональные наноматериалы и высокочистые вещества» Суздаль, 2010; XIV Всероссийская конференция и IV школа молодых ученых «Высокочистые вещества и материалы. Получение, анализ, применение», 2011; XIX Менделеевский съезд по общей и прикладной химии, 2011; Всероссийские конференции аспирантов и молодых научных сотрудников «Физикохимия и технология неорганических материалов» Москва, ИМЕТ РАН, 2009, 2010; 2011; 2012.

Работа выполнена в соответствии с планами НИР ИМЕТ РАН; поддержана программами фундаментальных исследований Президиума РАН П-7, П-27, проектом Программы ПРАН «Основы фундаментальных исследований нанотехнологий и наноматериалов», грантами РФФИ 06-03-32192, 06-08-01112, 09-03-00187, 09-08-12097-офи_м, № 11-03-12083 офи-м-2011, ФЦП «Исследования и разработки по приоритетным направлениям развития научнотехнологического комплекса России на 2007 – 2013 годы», Госконтрактом № 02.513.11.3159. Автор работы награждена медалью РАН для молодых ученых за достижения в области химии и наук о материалах. Получен патент РФ № 2367633 на изобретение. <u>Личный вклад автора</u> в настоящую работу состоит в разработке плана исследования, проведении экспериментов, обработке, анализе и обобщении полученных результатов.

Структура работы

Работа состоит из введения и 4 глав, включая обзор литературы, главу «материалы и методы экспериментов», главу «влияние метода и условий синтеза на характеристики нанопорошков гидроксиапатита», главу «влияние технологических факторов на формирование микроструктуры и механические свойства керамики из нанопорошков гидроксиапатита», заключения и общих выводов, а также списка литературы. Диссертационная работа изложена на 143 страницах, содержит 47 рисунков и 10 таблиц. Список цитируемой литературы включает 153 источника.

ОСНОВНОЕ СОДЕРЖАНИЕ РАБОТЫ

Во **введении** обоснована актуальность работы, сформулированы цели и задачи исследования, научная новизна и практическая значимость результатов работы.

<u>В первой главе</u> дан обзор литературы, в котором представлены общие сведения о тенденциях развития разработок и достигнутых результатах по созданию керамических материалов на основе гидроксиапатита для костной хирургии. Описаны основные представления о структуре костной ткани. Рассмотрены некоторые свойства ортофосфатов кальция, в частности плотность и растворимость. Описаны строение, кристаллохимические особенности, методы синтеза гидроксиапатита. Изложены основы технологии и свойства плотной ГА-керамики. Отмечена перспективность нанокристаллической керамики для достижения высокого уровня механических свойств. Обоснованы пока еще не решенные задачи в технологии гидроксиапатитовой нанокерамики и на основе этого сформулированы цель и задачи настоящего исследования.

<u>Во второй главе</u> содержится описание использованных в работе материалов, технологии получения порошков и керамики, оборудование и методики исследования и обработки данных.

Синтез порошков гидроксиапатита из водных растворов солей (**ос**) проводили в соответствии с уравнением реакции:

 $10Ca(NO_3)_2 + 6(NH_4)_2HPO_4 + 8NH_4OH \rightarrow Ca_{10}(PO_4)_6(OH)_2 + 20NH_4NO_3 + 6H_2O.$ (1)

При этом раствор фосфата аммония концентраций 0,6 М прикапывали со скоростью примерно 10 мл/мин. к смеси растворов нитрата кальция концентрацией 1 М и аммиака при постоянном перемешивании со скоростью 200-300 об./мин. Перемешивание продолжали в течение 2 ч. В процессе синтеза поддерживали pH=11-12 добавлением раствора аммиака. Варьировали температуру синтеза в интервале 0 – 80°С и продолжительность старения осадка.

Синтез с механохимической активацией (ма) производили согласно уравнению реакции:

 $10CaO + 6(NH_4)_2HPO_4 + 4H_2O \rightarrow Ca_{10}(PO_4)_6(OH)_2 + 12NH_4OH.$ (2)

Использовали планетарную мельницу с тефлоновыми барабанами и корундовые помольные тела. Синтез производили в две стадии: сначала смешивали сухие компоненты в течение 0, 30 или 60 мин., а затем к смеси приливали воду и смешивали в течение 0, 30 или 60 мин. В обоих способах полученный раствор подвергали старению до 24 ч. Осадок отделяли от маточного раствора фильтрованием на воронке Бюхнера, промывали дистиллированной водой, затем этиловом спиртом, затем толуолом. Высушивали осадок в сушильном шкафу при 80-100°C; полученные порошки протирали через сито с размером ячейки 96 мкм.

При осаждении из растворов варьировали температуру реакционной среды, время старения осадка в маточном растворе, температуру их прокаливания. При синтезе методом механохимической активации изменяли продолжительность взаимодействия исходных компонентов без воды и с добавлением воды, температуру и продолжительность старения осадка в маточном растворе.

Изучали фазовый состав полученных порошков, производили расчет среднего размера областей когерентного рассеяния (ОКР), параметров *а* и *с* кристаллической решетки, в некоторых случаях – микродеформации решетки; исследовали наличие функциональных групп; измеряли площадь удельной поверхности и рассчитывали средний размер частиц; изучали морфологию и размер частиц по данным сканирующей (СЭМ) и просвечивающей микроскопии (ПЭМ); в некоторых случаях исследовали поведение порошков методами термического анализа и дилатометрии.

Формование порошков производили одноосным двусторонним прессованием без введения связки в стальной пресс-форме в форме балочек сечением $30 \times 4 \text{ мм}^2$ на гидравлическом ручном прессе при комнатной температуре. Давление прессования изменяли от 40 до100 МПа, в некоторых случаях стандартным для опытов давлением было 80 МПа. Гидростатическое прессование проводили в резиновых оболочках в воде на прессе гидростатического прессования Аvure technologies CIP 62330 при давлении 250 МПа в течение 5 мин.

Обжиг заготовок проводили в печах различного типа. Обжиг прессовок проводили при температурах 900, 1000, 1100, 1200 °C в печи с карбид-кремниевыми нагревателями в воздушной атмосфере со скоростью нагрева 10 °C/мин.; прокаливание проб порошков проводили при 400, 700, 900 и 1000 °C скоростью нагрева 10 °C/мин. в муфельной печи сопротивления в воздушной атмосфере; обжиг прессовок в атмосфере вакуума проводили в вакуумной печи с вольфрамовыми нагревателями и внутренними экранами из молибдена с предельным вакуумом $6,65 \times 10^{-5}$ мм рт. ст. при 1000 и 1200 °C со скоростью нагрева 10 °C/мин.

Горячее прессование гидроксиапатита проводили в печи горячего прессования Thermal technology Inc HP 250-3560-20 в атмосфере азота при давлении 30 МПа и температурах 800, 900, 1000, 1100, 1200, 1300 °C.

Изучали фазовый состав материалов, в некоторых случаях рассчитывали средний размер ОКР и микродеформации кристаллической решетки материалов, изучали уплотнение при непрерывном нагреве, выясняли интервалы интенсивного спекания, измеряли открытую пористость, усадку, относительную плотность, прочность при изгибе (Instron 5581, трехточечный изгиб, выборка – не менее 5 образцов на точку, погрешность измерения менее 1 %), микротвердость, (прибор Micro-hardness tester 401 MVD, метод Виккерса, нагрузка на индентор 490 мН), размеры кристаллов керамики оценивали на шлифах методом СЭМ.

Рентгенофазовый анализ (РФА) материалов выполняли на диффрактометрах Shimadzu XRD-6000 и Rigaku Ultima IV с использованием банка данных картотеки JCPDS и ICDD, соответственно для двух указанных приборов. Удельную поверхность (Syд.) порошков измеряли по методу БЭТ низкотемпературной адсорбции азота на приборе Tristar 3000 Micromeritics. По результатам измерений оценивали размер частиц порошка в приближении сферической модели формы частиц. ИК-спектры поглощения образцов регистрировали на ИК-Фурье спектрометре Nicolet Avatar-330 в диапазоне 4000-500 см⁻¹.

Исследования поверхностей керамики проводили на сканирующем электронном микроскопе Tescan Vega II SBU. Исследование формы, размеров частиц, фазового состава нанопорошков проводили на электронном микроскопе ЭМ-100БР в Воронежском государственном университете (ГОУ ВПО ВГУ). Поведение материалов при непрерывном нагреве изучали на приборе синхронного термического анализа STA 409 Luxx в режимах ДТА/ДСК/ТГ. Изучение спекания керамики выполняли на дилатометре DIL 402-C Netzsch.

Третья глава посвящена изучению зависимости характеристик порошков ГА от методов и условий синтеза. Среди большого количества методов мы выбрали осаждение из водных растворов нитрата кальция и гидрофосфтата аммония и механохимическую активацию при взаимодействии оксида кальция и гидрофосфата аммония, как наиболее простые и воспроизводимые, на наш взгляд, для получения наноразмерного ГА.

На протекание реакций осаждения оказывает влияние температура проведения процесса, на старение частиц осадка – время его старения в маточном растворе и условия термической обработки после фильтрования. В этой связи при осаждении из растворов варьировали температуру реакционной среды от 0 до 80 °C, время старения осадка в маточном растворе от 0 до 96 ч., температуру прокаливания порошков от 400 до 1000 °C.

При синтезе методом механохимической активации изучали фазовый состав продукта после взаимодействия между сухими компонентами, а также в водной среде. Кроме этого, изучали влияние температуры от 20 до 60 °C и продолжительности до 15 сут. старения осадка в маточном растворе на дисперсность и морфологию продуктов.

3.1. Осаждение из растворов

3.1.1. Температура реакционной среды

Синтез проводили при температуре реакционной среды 0, 13, 35, 60 и 80 °C. Результаты измерений удельной поверхности, оценки среднего размера ОКР, параметров элементарной ячейки *а* и *с* кристаллов порошков приведены в табл. 1.

При температурах 0, 13, 35 °С порошок состоит из рыхлых агломератов вытянутых частиц до 20 нм в сечении, при 60 и 80 °С частицы имеют игольчатую форму около 40 нм в ширину и 100-200 нм в длину. ИК-спектры порошков имеют полосы поглощения, характерные для карбонатсодержащих ГА.

Согласно данным РФА, кристаллической фазой продуктов синтеза, проведенного при различных температурах, является гидроксиапатит Ca₁₀(PO₄)₆(OH)₂ (№09-0432) (рис.1, а). При более высоких температурах (60 и 80 °C) порошки обладают большей закристаллизованностью и размером кристаллов, чем при низких температурах (0, 13, 35 °C) (рис.1, б), что подтверждают расчеты ОКР. Средний размер ОКР немонотонно растет с увеличением температуры синтеза: от 14 нм при 0 °C до 41 нм при 80 °C.

Таблица 1

Результаты измерения удельной поверхности ГА и данных РФА							
Температура синтеза, °С	0	13	35	60	80	ГА 09-0432	
Удельная поверхность, ±0.5, м²/г	98	90	139	69	54	-	
Средний размер частиц по удельной поверхности, ±2, нм	20	22	14	19	40	-	
Средний размер ОКР по Шерреру, ±10%, нм	14	16	19	24	41	-	
Параметр а, ±0.002, Å	9,424	9,429	9,438	9,439	9,436	9,418	
Параметр с, ±0.002, Å	6,892	6,891	6,896	6,899	6,904	6,884	

Рис. 1. Рентгенограммы порошков, осажденных при различных температурах: а – общий вид, б – вид основных пиков ГА.

Значения параметра *а* элементарной ячейки ГА растут от 0 до 35 °C с увеличением температуры синтеза, затем изменяются незначительно для температуры 60, 80 °C (табл.1). Параметр *с* в основном монотонно увеличивается с увеличением температуры синтеза. Отмечено, что параметры ГА, полученного при 0 и 13 °C, близки к параметрам для стехиометрического ГА ($N \ge 09-0432$, JCPDF), а для материалов, синтезированных при 35, 60, 80 °C, - близки к параметрам для кальций-дефицитного ГА Са₉HPO₄(PO₄)₅OH ($N \ge 46-0905$, JCPDF).

Отклонения от стехиометрического состава ГА, вероятно, связаны с вхождением в структуру карбонат-ионов, захваченных при синтезе из углекислого газа воздуха. Изменение параметров кристаллической решетки ГА происходит благодаря разнице в размерах между анионами PO_4^{3-} , OH^- и CO_3^{2-} . Можно предполагать, что при всех температурах имеет место карбонат-замещение смешанного типа, однако при 0 и 13 °C имеет место преимущество вхождения CO_3 -групп в позиции OH-анионов, при температурах от 35 до 80 °C происходит приоритетное замещение в позиции PO_4-групп.

Таким образом, осаждением из водных растворов нитрата кальция и гидрофосфата аммония синтезирован нанокристаллический порошок нестехиометрического гидроксиапатита, содержащего карбонатные ионы. При увеличении температуры реакционной среды от 0 до 80 °C характеристики порошков меняются соответственно: удельная поверхность падает от 98 до 54 м²/г, размер ОКР растет от 14 до 40 нм, параметры кристаллической решетки увеличиваются *a* – от 9,424 до 9,436 Å и *c* – от 6,892 до 6,904 Å, морфология изменяется от изометрической до игольчатой.

3.1.2. Время старения

Продукт реакции подвергали старению в течение 0, 1, 3, 6, 24, 96 ч. при комнатной температуре. В табл. 2 представлены данные по площади удельной поверхности порошков, расчетный средний размер частиц, ОКР и параметры кристаллической решетки ГА.

Таблица 2

данные площади удельной поверхности и гФА							
Температура синтеза, °С	0	1	3	6	24	96	ГА 09-0432
Удельная поверхность, ±0.5, м²/г	15	18	18	19	48	60	
Средний размер частиц по удельной поверхности, ±2, нм	125	105	109	100	40	32	
Средний размер ОКР по Шерреру, ±10%, нм	41	46	-	75	22	16	
Параметр а, ±0.002, Å	9,454	-	9,433	9,421	9,442	9,439	9,418
Параметр с, ±0.002, Å	-	-	-	-	6, 900	6,896	6,884

Данные площади удельной поверхности и РФА

По данным РФА в течение первых шести часов старения продукт содержит 60 масс.% аморфной фазы и 40 масс.% кристаллической фазы. Последняя представлена витлокитом, т.е. β -ТКФ, (60 масс.%) и гидроксиапатитом (40 масс.%). С увеличением времени старения происходит снижение доли β -ТКФ и при 24 ч. старения материал составлен однофазным гидроксиапатитом с аморфной составляющей до 50 масс.%. При 96 ч. старения количество аморфной фазы и закристаллизованность продукта меняются незначительно.

Согласно результатам измерения удельной поверхности порошков, средний размер частиц в общем снижается с увеличением времени старения, но не монотонно. Средний размер ОКР частиц в течение первых шести часов

растет от 41 до 75 нм, а затем резко снижается к 24 ч до 22 нм. В течение первых шести часов старения параметр *а* кристаллической решетки уменьшается от 9,454 при 0 ч. до 9,421 Å при 6 ч., затем увеличивается до 9,442 Å к 24 ч. и остается примерно постоянным до 96 ч. старения.

Таким образом, формирование апатитовой фазы при осаждении происходит через образование β -ТКФ или в его присутствии. В течение первых шести часов старения в маточном растворе происходит химическое старение осадка: остаточная химическая реакция между осадком и маточным раствором. Кроме этого, происходит созревание осадка: увеличение размеров кристаллов, уменьшение параметров кристаллической решетки. При этом порошок характеризуется относительно низкой удельной поверхностью за счет высокой агломерированности и гидрофильности. К 24 ч. и далее к 96 ч. старения осадок представляет собой апатитовую фазу с большой долей аморфной составляющей (до 50-60 масс.%), происходит кристаллизация осадка: средний размер частиц и размер ОКР уменьшается, параметры кристаллической решетки остаются постоянными. В связи с этим после синтеза из водных растворов нитрата кальция и гидрофосфата аммония необходимо проводить старение осадка в маточном растворе по крайней мере 24 ч. для получения нанокристаллического однофазного гидроксиапатита.

3.1.3. Температурная обработка порошков

Термообработку порошков проводили при 400, 700, 900 и 1000 °C со скоростью 10 °/мин. и изотермической выдержкой 1 ч. Основные данные представлены в табл. 3.

Таблица 3

Температура прокаливания, °С	400	700	900	1000	ГА 09-0432
Удельная поверхность, ±0.5, м²/г	46	32	7	5	
Средний размер частиц по удельной поверхности, ±2, нм	40	60	300	350	
Средний размер ОКР по Шер- реру, ±10%, нм	20	24	56	70	
Деформация решетки, %	$0,\!49 \pm 0,\!2$	$0,31 \pm 0,1$	$0,\!17\pm0,\!08$	$0,12 \pm 0,06$	
Параметр а, ±0.002, Å	9,440	9,425	9,430	9,433	9,418
Параметр с, ±0.002, Å	6,906	6,890	6,889	6,890	6,884

Основные характеристики порошков, прокаленных при разной температуре

РФА прокаленных при различных температурах порошков выявил кристаллизацию единственной фазы - гидроксиапатита. С увеличением температуры происходит рост закристаллизованности частиц и их укрупнение, средний размер ОКР растет от 20 нм при 400 °С до 70 нм при 1000 °С. Тенденция изменения параметра *а* решетки соответствует переходу от кальцийдефицитного к более стехиометрическому составу апатита для порошков, прокаленных при 400 и 700 °С. Деформация (ε) кристаллической решетки кристаллов снижается от 0,49 до 0,12 %. Снижение ε с повышением температуры обработки свидетельствует о снятии в процессе структурообразования значительного количества напряжений, связанных с неоднородной деформацией кристаллов, и как следствие, с неоднородным изменением межплоскостных расстояний.

По данным ПЭМ (рис. 2) с увеличением температуры обработки происходит изменение формы частиц и их среднего размера. Порошок, термообработанный при 400 °C (рис.2, а), имеет игольчатую форму частиц длиной около 30 нм и 5-10 нм в поперечном сечении. Частицы порошка, прокаленного при 700 °C (рис. 2, б), также игольчатой формы, имеют длину 50-100 нм и ширину 10-20 нм. После термообработки порошка при 900 °C (рис.2, в) частицы приобретают форму пирамиды гексагонального сечения с диагональю 70-100 нм, высота которой примерно равна размеру диагонали. Обработка при температуре 1000 °C (рис. 2, г) приводит к укрупнению кристаллов до 150-200 нм.

Рис. 2. ПЭМ-фотографии порошков гидроксиапатита, прокаленных при температурах: a - 400°C, б - 700°C, в - 900°C, г - 1000°C

Оценка кажущейся энергии активации (Q) процесса роста кристаллов с ростом температуры при использовании данных по площади удельной поверхности порошков дала значение Q = 40 кДж/моль при аппроксимации графика линейной зависимостью (рис. 3, а). Однако кажущаяся энергия активации может быть чувствительной к размеру и форме частиц, их структурному состоянию, которые изменяются в процессе термообработки. Поэтому зависимость (lnD)–(1/T) можно аппроксимировать как нелинейную с тремя участками (рис. 3, б). При этом изменение наклона прямых каждого участка свидетельствует об изменении механизма роста частиц. Расчетные значения для первого, низкотемпературного участка, $Q_{\rm I} = 25$ кДж/моль, для последнего участка, при росте относительно крупных частиц, $Q_{\rm II} = 166$ кДж/моль, промежуточный участок является переходным. Для сравнения: кажущаяся энергия активации роста кристаллов при спекании керамики из микропорошков ГА составляет Q = 196 кДж/моль.

Для более детального исследования закономерностей роста частиц исходный порошок термообрабатывали без изотермической выдержки при непрерывном нагреве до 1200 °C; для оценки удельной поверхности каждые 100 °C пробу порошка извлекали из печи и немедленно охлаждали. Исходный порошок характеризуется удельной поверхностью 95 м²/г, и расчетным средним размером частиц 20 нм. При увеличении температуры прокаливания происходит немонотонный рост частиц (рис. 3, в). Видны два участка точек, которые можно линейно аппроксимировать (рис. 3, г). Различие в ходе двух прямых обусловлено изменением механизмов, происходящих на каждом из отрезков. Первый участок можно определить как рост частиц в нанометровом диапазоне. Второй участок можно отнести к процессам роста микроразмерных порошков. Механизм процесса роста частиц изменяется в интервале температур 600-700 °C, а переход собственно размерности частиц от нано- к микро- прослеживается в интервале температур 800-900 °C.

Рис. 3. Зависимость размера частиц порошка от температуры прокаливания.

С изотермической выдержкой: а – линейная аппроксимация, б – зависимость с переходным участком.

Без изотермической выдержки: в – в координатах D-T, г - в координатах lnD-1/T с разделением на два участка: I – для наноразмеров, II – для микроразмеров.

Таким образом, изменяя температуру обработки порошков после синтеза возможно получать порошки гидроксиапатита различной дисперсности и морфологии. Обработка при температурах до 400 °C не приводит к значительному изменению характеристик частиц порошков после синтеза. При температуре прокаливания до 700 °C порошки представляют собой агломераты частиц кальций-дефицитного ГА игольчатой формы с длиной до 50-100 нм и шириной до 10-20 нм. При температуре до 900 °C частицы приобретают гексагональную форму со средним размером 70-100 нм, при 1000 °C кристаллы увеличиваются до размеров 150-200 нм. Зависимость размера кристаллов от температуры термообработки нелинейна, что свидетельствует о возможной зависимости кажущейся энергии активации роста частиц от их размеров.

3.2. Метод механохимической активации

3.2.1. Продолжительность синтеза

Процесс синтеза условно разделили на два этапа: "сухой" (τ_1) и "мокрый" (τ_2), т.е. смешение сухих материалов и при добавлении воды, соответственно. Продолжительность указанных этапов составляла 0, 30, 60 мин.

По данным РФА, при смешении исходных компонентов в течение 30 мин. (30:0) получали механическую их смесь. Увеличение времени смешения до 60 мин. (60:0) приводит к незначительному снижению интенсивностей пиков основных отражений компонентов, что свидетельствует об уменьшении дисперсности материалов. Смешение компонентов в присутствии воды в течение 30 мин. (0:30) приводит к образованию ГА и остаточному присутствию сложного соединения: аммоний кальций фосфата гидрат NH₄CaPO₄·H₂O, вероятно, промежуточной фазы образования ГА при данных условиях синтеза. При перемешивании компонентов в воде в течение 60 мин. (0:60) образуется однофазный гидроксиапатит, идентичный полученному при соотношении времен стадий процесса 30:30.

Полученные материалы прокаливали при 900 °С в муфельной печи в течение 1 ч. для кристаллизации аморфной составляющей. Материал, полученный смешением сухих исходных компонентов в течение 30 мин. (30:0) состоит из смеси фаз гидроксиапатита, трикальций фосфата β -модификации, оксида кальция и пирофосфата кальция β -модификации. Порошки, полученные при добавлении воды, т.е. с соотношением времен процесса (0:30), (0:60), (30:30), представлены хорошо закристаллизованным 100 %-ным гидроксиапатитом.

Таким образом, в процессе синтеза гидроксиапатита в планетарной мельнице на первом "сухом" этапе происходит смешение и измельчение твердых компонентов. Это активирует последующее химическое взаимодействие и увеличивает площадь межфазовых поверхностей для диффузии компонентов. На "мокром" этапе смешения с водой происходит собственно химическое взаимодействие, в частности реакция образования гидроксиапатита. При этом образование ГА, возможно, происходит через промежуточное соединение аммоний кальций фосфат гидрат, которое неустойчиво при 900 °C и переходит в гидроксиапатит. Процессы механического воздействия и химической реакции разделены во времени. При этом 100%-ный ГА можно получить при проведении химической реакции как без, так и с механическим воздействием (т.е. сухого перемешивания).

3.2.2. Условия старения

При синтезе с соотношением временных интервалов 30:30 после извлечения из барабана температура суспензии была 35 ± 2 °C, что связано с выделением энергии при ударе или истирании шаров во время синтеза. Величина pH имела значения 11,8-12,2. Старение суспензии в маточном растворе проводили при температурах 20, 37 и 60 °C в течение 0 ч., 1 ч., 3 ч., 6 ч., 12 ч., 24 ч., 96 ч. (4 сут.), 144 ч. (6 сут.), 360 ч. (15 сут.). Полученные материалы соответствуют низко закристаллизованному гидроксиапатиту. Интенсивность и ширина пиков основных отражений изменяются незначительно при изменении температуры и продолжительности старения. Расчет ОКР (D) также показал незначи-

тельное изменение значений в зависимости от условий старения: при 20 °C старения $D = 13\pm1$ нм во всем временном интервале; при 37 °C значение D растет от 13 до 15,5 нм при изменении времени старения от 1 до 6 ч., и затем не изменяется до 15 сут. (360 ч.) старения. Такое незначительное различие в значениях ОКР близко к погрешности определения.

Параметр *a* кристаллической решетки ГА, состаренного при 20 °С, растет от 9,439 до 9,448 Å с увеличением времени старения от 1 до 144 ч. (6 сут.), к 360 ч. (15 сут.) величина параметра *a* снижается до 9,442 Å. Изменение параметра *c* при этом незначительное от 6,892 до 6,895 Å и лежит в пределах погрешности расчетов. При старении осадка при 37 °С параметр *a* растет от 9,432 до 9,447 Å с увеличением времени старения от 1 до 3 ч., и затем снижается до 9,433 Å к 360 ч. (15 сут.) старения. Параметр *c* растет незначительно: от 6,894 до 6,895 Å к 6 ч. старения, затем снижается до 6,893 Å к 360 ч. старения. Эти изменения близки к ошибке определения параметров решетки.

По данным ПЭМ порошок сразу после синтеза (0 ч.) состоит в основном из агрегатов частиц вытянутой эллипсоидальной формы с поперечными размерами до 20 нм шириной и до 80 нм длиной (рис. 4). Частицы состоят из блоков нанокристаллов ГА размером около 5 нм, окружены аморфной оболочкой и содержат большое количество пор размером 2 нм. В процессе старения порошков при 37 °C наибольшее увеличение частиц происходило за 6 часов старения – приблизительно в полтора раза, более длительное время старения приводит к незначительному изменению размеров частиц, морфология не изменяется. Состаренные в течение 24 ч. порошки с ростом температуры старения от 20 до 60 °C проявляют тенденцию к росту размеров частиц в среднем в два раза (от 40-60 нм до 80-100 нм) и снижению агломерированности, что может быть объяснено процессами кристаллизации аморфной фазы.

Рис. 4. Светлопольные ПЭМ изображения нанопорошка ГА, состаренного при 37°С в течение 0ч. (а), 6 ч. (б), 24 ч. (в).

Полученные результаты позволяют сделать вывод о том, что метод механохимической активации является простым, производительным и воспроизводимым методом получения наноразмерных порошков ГА. Поскольку взаимодействие происходит в замкнутых системах (помольных барабанах), то влияние таких условий окружающей среды как колебания температуры, влажности, поступления примесей или газов из воздуха, а также продолжительности старения – значительно снижено. В связи с тем, что продолжительность старения осадка влияет незначительно на состав, размер и морфологию частиц, можно указанную стадию свести к минимуму, тем самым упростив технологию.

<u>Четвертая глава</u> посвящена изучению влияния основных факторов на формирование микроструктуры и механических свойств керамики. В ней

представлены результаты исследования микроструктуры, плотности, прочности при изгибе, микротвердости материалов, и других свойств керамики в зависимости от метода получения исходных порошков, их дисперсности, температуры обработки, плотности прессовки, давления прессования, температуры, среды обжига и приложения давления при обжиге.

4.1. Условия прессования

В работе использовали традиционное одноосное двустороннее прессование в стальной пресс-форме и дополнительное гидростатическое прессование в резиновых оболочках в воде. Изучали влияние давления прессования и дисперсности порошков, полученных осаждением из растворов (ос) и механохимической активацией (ма), на показатели относительной плотности прессовок.

Проведенные эксперименты делятся на две серии. В первой серии использовали порошки (ма) группы 1 и 2 (табл. 4) с площадью удельной поверхности 108 и 29 м²/г, расчетным средним размером частиц 18 и 65 нм, соответственно. Образцы прессовали под давлением 80 МПа, часть прессовок подвергали гидростатическому прессованию (ГСП). Значения плотности прессовок в зависимости от давления прессования представлены в табл.4.

Таблица 4

Характеристики эксперимента и свойства используемых порошков								
	Относительная плотность прессовки, $\sigma_{omh.} \pm 2, \%$							
Лавление прес-	CII)							
сования, МПа	средний размер частиц, <i>D</i> _{Syd.} , нм							
	18 (ма)	65 (ма)	35 (oc)	70 (ма)				
серия	1	2	3	4				
40			31	35				
60			34	37				
80	41(53)	40(50)	37	40				
100			38	41				

Во второй серии экспериментов использовали порошки (ос) и (ма) с удельной поверхностью 56 м²/г и 27 м²/г, и расчётным средним размером частиц около 35 и 70 нм, соответственно, группа 3 и 4 (табл. 4). Образцы прессовали при давлении 40, 60, 80 и 100 МПа. Значения плотности прессовок в зависимости от давления прессования представлены в табл.4.

Установлено, что нанопорошки ГА склонны к агломерации, адсорбции воды и захвату воздуха при прессовании, что ведет за собой необходимость первоначального их гранулирования (компактирования) для получения бездефектных образцов. С уменьшением дисперсности порошков эта необходимость снижается, т.к. снижается поверхностная энергия и адсорбционная способность газов поверхностью. В результате плотность прессовок выше для порошков, полученных из более крупных нанопорошков (70 нм). Кроме этого, при увеличении приложенного давления от 40 до 100 МПа относительная плотность заготовок растет примерно на 5-7%. Гидростатическая допрессовка приводит к росту плотности на 12%, связанному с дополнительным всесторонним сжатием и снижением общего усилия вследствие потерь на трение материала о стенки пресс-формы.

4.2. Плотность полуфабриката

Изучали влияние относительной плотности прессовок из порошков серий 1-4, указанных в табл. 4, на свойства керамики. Обжиг проводили при температурах 900, 1000, 1100, 1200 °C со скоростью нагрева 10°C/мин. и выдержкой 2 часа.

Значения свойств материалов групп 1 и 2, полученных без ГСП, с ростом температуры обжига от 900 до 1100 °С отличаются незначительно: пористость снижается от 50 до 35%; усадка растет от 6-10 до 17%, плотность увеличивается от 50 до 65%. При обжиге при 1200°С показатели свойств материалов группы 1 выше, чем группы 2: пористость 17 и 30 %, усадка 23 и 17 %, плотность 80 и 68%, соответственно, для групп 1 и 2. С ростом температуры обжига от 900 до 1200 °С прочность при изгибе материалов группы 1 увеличивается от 20 до 50 МПа и группы 2 – от 15 до 55 МПа, соответственно. Размер кристаллов керамики из порошка группы 1 растет от 0,2-0,4 мкм до 0,8-1,2 мкм соответственно для 1000 и 1200 °С. Размер кристаллов керамики из порошков группы 2 составляет 0,1-0,2 мкм при 1000 °С и 0,4-0,8 мкм при 1200 °С.

В результате дополнительного гидростатического прессования для керамики группы 1 открытая пористость снижается примерно на 15 %, усадка значительно не меняется, плотность образцов повышается в среднем на 13% (до 93 % при 1200°С), прочность при изгибе возрастает примерно в 2 раза: от 65 МПа при 900 °С до 120 МПа при 1200°С. Для прессовок группы 2 с ГСП был проведен обжиг только при температуре 1200 °С, при этом значительно снизилась пористость материалов относительно полученных без ГСП обжигом при 1200 °С – от 30 % (без ГСП) до 4,5 % (с ГСП). Относительно материала без ГСП, полученного обжигом при 1200 °С, относительная плотность возросла на 20 % и составляет 87 %, а прочность при изгибе – в 3,2 раза и составляет 170 МПа. Размер кристаллов керамики из порошка группы 1 (с ГСП) 0,1-0,2 мкм при 1000 °С и 0,4-0,8 мкм при 1200 °С, для керамики из порошка группы 2 (с ГСП) – 0,4-0,6 мкм при 1200 °С.

Керамика, полученная из порошков группы 3 со средним размером частиц 35 нм (ос), имеет показатели плотности и прочности выше, чем материалы группы 4 со средним размером частиц 70 (ма). Для материалов группы 3 с увеличением плотности прессовок от 31 до 38 % плотность керамики увеличивается в общем на 10-16 % и с увеличением температуры обжига от 900 до 1200 °С – в общем на 36-44 %; прочность при изгибе растет от минимального значения 20 МПа для керамики, полученной обжигом прессовки с плотностью 31 % при 900 °C, и достигает максимального значения 70 МПа для керамики, полученной обжигом прессовки с плотностью 37 % при 1100 °C. Обжиг при 1200°С приводит к снижению прочности керамики всей линейки плотностей исходных прессовок. Для материалов группы 4 рост плотности прессовок от 35 до 41 % приводит к росту плотности керамики на в общем 13-22 % и с увеличением температуры обжига от 900 до 1200 °C - на 50-60 %; при этом прочность при изгибе растет от минимального значения 60 МПа для керамики, полученной обжигом прессовки с плотностью 35 % при 900 °C, и достигает максимального значения 50 МПа для керамики, полученной обжигом прессовки с плотностью 41 % при 1200°С.

Таким образом, повышение плотности исходных прессовок приводит к повышению прочности при изгибе керамического материала. При этом повышение плотности прессовки в среднем на 12 % приводит к повышению относительной плотности керамики в среднем на 15-20 %, и росту значений прочности при изгибе в 2-3 раза. Использование дополнительного гидростатического прессования после прессования образцов в стальных формах является эффективным для повышения плотности прессовок, что связано с дополнительным всесторонним сжатием, а также снижением неравноплотности материала и анизотропии строения, проявляющихся при одноосном сжатии.

4.3. Дисперсность порошков

Установлено, что керамика, полученная из нанокристаллических порошков с площадью удельной поверхности 30-45 м²/г, средним размером частиц 40-60 нм, игольчатой морфологии при спекании при 1200°С имеет показатели прочности при изгибе выше, чем керамика, изготовленная из порошков размеров 300-350 нм с площадью удельной поверхности 5-7 м²/г и гексагональной формой частиц. Прочность при изгибе первых составляет 75-85 МПа в сравнении с 30-40 МПа для последних. Существует оптимум температуры термической обработки (700 °С) исходных нанопорошков, при которой процессы спекания происходят наиболее активно (интервал спекания 850-1050°С, усадка 22,8 %), достигаются низкая открытая пористость (0,5%) и максимум прочности керамики (85 МПа). Рост среднего размера кристаллов керамики происходит монотонно от 0,5 до 1,5 мкм при обжиге при 1200 °С.

Изменение показателей свойств керамики с ростом частиц порошков немонотонное. Для частиц с размером от 40 до 350 нм увеличивается открытая пористость керамики от почти нулевой до 15 %, растет доля крупных пор размером от 0,75 мкм, а мелких (до 0,75 мкм) - уменьшается, снижаются относительная плотность материала от 97 до 84 % и прочность при изгибе от 75 до 40 МПа. Наибольшие показатели прочности при изгибе 85 МПа и плотности 96 %, а также однородность кристаллов достаточно небольшого размера до 0,5 мкм, достигнуты для керамики, полученной из порошка со средним размером частиц 60 нм с игольчатой формой частиц. В указанном материале процессы спекания происходят наиболее активно: интервал спекания 850-1050 °C, усад-ка 22,8%, достигается низкая открытая пористость 0,5%.

Изученная керамика была изготовлена из порошков, полученных прокаливанием исходного (после синтеза) при различных температурах (п. 3.1.3). Наилучшие свойства были получены для керамики, изготовленной из порошка, прокаленного при 700 °C. В этой связи можно рекомендовать термическую обработку порошков после синтеза при 700 °C для получения керамики с повышенными плотностью и прочностью.

4.4. Условия спекания

Обжиг в вакууме

Обжиг в вакууме при температурах 1000 и 1200 °C с выдержкой 1 ч. проводили на прессовках, полученных при давлении 80 МПа из порошков ГА

группы 1 и группы 2 из табл. 4 (18 и 65 нм (ма)), а также с ГСП. Прочность при изгибе материалов в зависимости от среды обжига представлена в табл. 5.

На рис. 5 представлены микрофотографии излома керамики, полученной из порошков группы 1 без ГСП и с ГСП обжигом в воздушной среде и в вакууме. При 1000°С вакуумирование приводит к снижению пористости, увеличению площади контактов, достижению более равномерной структуры (размер частиц 0,1-0,2 мкм без ГСП и с ГСП). При 1200°С количество и размеры пор уменьшаются, размер кристаллов увеличивается до 1-1,4 мкм без ГСП и до 0,6-2 мкм с ГСП.

Прочность при изгибе материалов, полученных обжигом в воздушной

Таблица 5

среде и в вакууме, МПа							
Среда обжига	Температура	Гр	Группа материала, без и с ГСП				
	обжига, °C	обжига, °С 1		2	2, ГСП		
Воздух	1000	40	90	35	-		
Вакуум	1000	30	30	45	50		
Воздух	1200	50	120	55	170		
Вакуум	1200	130	145	155	55		

Материал, полученный из порошка гр. 2 с ГСП обжигом при 1000°С состоит из частиц размером до 0,2 мкм, спеченных в более крупные агломераты до 0,5-1 мкм, достаточно равномерно распределенных в поровой фазе. При температуре обжига 1200 °С материал составляют кристаллы размером в среднем 1-1,5 мкм; объемное содержание пор достигает ~10%.

Рис. 5. СЭМ-фотографии керамики, полученной из порошков гр. 1 при различных условиях: а-г – при 1000 °C, д-з – при 1200 °C; а,в,д,ж, - без ГСП, б,г,е,з – с ГСП; а,б,д,е – обжигом в воздушной среде, в,г,ж,з – обжигом в вакууме.

Таким образом, проведение обжига в вакууме позволяет получить беспористый материал, поскольку оставшиеся после стадии прессования в порах газы интенсивно удаляются и не препятствуют их зарастанию. Обжиг в вакууме при 1200°С позволяет повысить прочность при изгибе в 2,5-3 раза (до 155 МПа) материалов, полученных из нанопорошков без применения ГСП. Для материалов, полученных прессованием с использованием ГСП, обжиг в вакууме в нашем случае оказался не эффективным. Можно говорить о том, что положительный эффект по увеличению прочности керамики от ГСП при прессовании по величине примерно равен эффекту от вакуумирования при обжиге.

Горячее прессование

Проводили сравнительное исследование свойств материалов, полученных путем холодного прессования исходного порошка группы 1 и последующего спекания на воздухе и методом горячего прессования. Горячее прессование предварительно отпрессованного исходного гидроксиапатита проводили при давлении 30 МПа в атмосфере азота при температурах 800, 900, 1000, 1100, 1200 °C и выдержкой 30 мин. Относительная плотность предварительных прессовок составила в среднем 40±5 %.

С увеличением температуры спекания с 900 до 1300 °С относительная плотность возрастает от 50 до 92 % и от 60 до 97 %, а открытая пористость снижается от 48 до 0,5 % и от 37 до 0,5 %, для материалов полученных спеканием на воздухе и горячим прессованием, соответственно. При горячем прессовании при 1000 °С (рис. 6, а) материал плотный, с небольшим значением общей пористости – до 5-10 %, состоит из хорошо выраженных кристаллов размером 80-120 нм. Увеличение температуры горячего прессования до 1100 °С (рис. 6, б) приводит к незначительному росту кристаллов до 0,2-0,4 мкм, с редким включением крупных пор. При 1200 и 1300 °С (рис. 6, в, г) средний размер кристаллов составляет 0,8-2,0 и 2-3 мкм, соответственно, поры внутрикристаллические до 0,1-0,2 мкм.

Рис. 6. СЭМ-фотографии керамики, полученной горячим прессованием при температурах, °C: а – 1000, б – 1100, в – 1200, г – 1300.

Твердость по Виккерсу керамики, полученной спеканием на воздухе, монотонно возрастает с температурой, достигая при 1000 и 1300 °C значений

0,1 и 3,6 ГПа, соответственно. Значения микротвердости материалов, полученных горячим прессованием, выше и при 1000 °С достигают 4,2 ГПа. Максимальная микротвердость 5,6 ГПа достигается для материалов, полученных при 1100 °С. При 1300 °С микротвердость составляет 4,4 ГПа. Повышение микротвердости можно объяснить снижением дефектности кристаллов и повышением плотности материала; снижение, видимо, связано с ростом кристаллов, следовательно, с уменьшением протяженности их границ, являющихся препятствием для распространения микротрещин. Различие в значениях микротвердости для обоих методов связано с вкладом высокой пористости при спекании на воздухе и достижении высокой плотности при спекании под давлением уже при относительно низких температурах (1000 °C).

Таким образом, метод горячего прессования в графитовых прессформах является эффективным для получения плотной керамики на основе гидроксиапатита с повышенными показателями механических свойств. Благодаря более низким температурам по сравнению с обычным спеканием рост кристаллов ограничивается и достигается более мелкозернистая однородная структура. При 1000 °C структура материала сложена хорошо выраженными кристаллами однородными по размеру 80-150 нм, относительная плотность достигает 93 %, открытая пористость – 0,5 %. Микротвердость материалов, полученных при спекании под давлением, выше, чем при традиционном спекании: при 1000°C составляет 4,2 ГПа – для первых и 0,1 ГПа – для вторых и при 1200°C –5,0 и 2,3 ГПа, соответственно.

выводы

В настоящей работе, в соответствие с поставленной целью, технологию получения керамики с повышенными прочностными характеристиками и контролируемым размером кристаллов, приближающимся к нанометровым, рассматривали как эволюцию структуры материала на различных технологических этапах: от синтеза порошков и формования из них заготовки до создания изделия.

В работе приведены результаты исследований влияния условий синтеза на дисперсность и морфологию конечных порошков, представлены результаты исследования процессов формирования микроструктуры и изменения механических свойств керамики в зависимости от дисперсности исходных порошков, плотности полуфабриката, среды и температуры обжига, в том числе при использовании горячего прессования.

По результатам проведенных исследований можно сформулировать следующие выводы.

1. Продуктом осаждения из водных растворов нитрата кальция и гидрофосфата аммония стехиометрического соотношения при pH=11-12 является низкозакристаллизованный порошок ГА (до 40 масс.%) и β-ТКФ (до 60 масс. %). Формирование 100 %-ного ГА происходит при старении осадка в маточном растворе более 24 ч. Получаемый ГА является нанокристаллическим кальций-дефицитным, карбонат-содержащим. 2. При увеличении температуры синтеза от 0 до 80 °C снижается удельная поверхность от 98 до 54 м²/г, растет размер ОКР от 14 до 40 нм, увеличиваются параметры кристаллической решетки a – от 9,424 до 9,436 Å и c – от 6,892 до 6,904 Å, изменяется морфология частиц от изометрической до игольчатой.

3. Термообработка синтезированного порошка в интервале 400-1000°С приводит к укрупнению частиц от 40 до 350 нм и изменению их формы от игольчатой до гексагональной, с равными поперечными размерами. Кажущаяся энергия активации роста частиц возрастает с увеличением размера частиц от 40 до 350 нм. Переход от нано- к микроразмерам частиц порошка происходит при температурах около 700-800 °С.

4. Установлено, что усадка, формирование микроструктуры и прочности при изгибе керамики зависят от температуры термообработки порошков. При этом оптимальной температурой обработки порошков является 700°С, при которой достигается максимум прочности при изгибе 85 МПа при среднем размере кристаллов керамики 0,5-0,8 мкм.

5. Продуктом синтеза методом механохимической активации в водной среде является нанокристаллический ГА с формой частиц, приближенной к игольчатой, длиной до 80 нм и шириной до 20 нм. На размер и морфологию незначительно влияет время старения осадка в маточном растворе, с ростом температуры старения от 20 до 60 °С частицы растут до 150 нм в длину и до 40 нм в ширину.

6. Повышение плотности и прочности при изгибе ГА-керамики достигнуто при использовании гидростатического прессования нанокристаллических порошков ГА (увеличение относительной плотности прессовок на 10-13%), горячим прессованием при пониженных температурах (снижение до 200°С) и обжигом в вакууме. При этом керамика обладает мелкозернистой однородной структурой (размер кристаллов 80-150 нм), повышенной в среднем на 20% плотностью (до 97 % от теоретической) и повышенной в 2-3 раза прочностью при изгибе (до 170 МПа).

7. Для получения высокопрочной ГА-керамики, которую можно использовать в качестве материала перманентных имплантатов, установлены следующие приоритетные технологические условия. Синтез порошков следует проводить преимущественно методом механохимической активации из смесей оксида кальция и гидрофосфата аммония в водной среде 30-60 мин. без последующего старения продукта. Порошки после синтеза следует подвергать термообработке при 700 °C в течение 1 ч. Прессовать порошки - с использованием гидростатического прессования, обжиг проводить в вакууме при 1200 °C или горячим прессованием при 1000-1100 °C.

ОСНОВНЫЕ ПУБЛИКАЦИИ ПО ТЕМЕ ДИССЕРТАЦИИ

- 1. Петракова Н. В., Лысенков А.С., Ашмарин А.А., Егоров А.А., Федотов А.Ю., Шворнева Л.И., Комлев В.С., Баринов С.М. Влияние температуры горячего прессования на микроструктуру и прочность гидроксиапатитовой керамики // Материаловедение. 2012. № 11. С. 50-56.
- 2. Фадеева И.В., Бакунова Н.В., Комлев В.С., Медвецкий Л., Фомин А.С., Гурин А.Н., Баринов С.М. Цинк- и серебросодержащие гидроксиапатиты: синтез и свойства // Доклады Академии наук. 2012. Т. 442. № 6. С. 780.
- 3. Алымов М.И., Бакунова Н.В., Баринов С.М., Белуник И.А., Фомин А.С., Иевлев В.М., Солдатенко С.А. Особенности уплотнения при прессовании нанопорошков гидроксиапатита // Российские нанотехнологии. 2011. Т. 6. № 5-6. С. 105-107.
- 4. Бакунова Н.В., Баринов С.М., Иевлев В.М., Комлев В.С., Титов Д.Д. Влияние термообработки на спекание и прочность керамики из нанопорошков гидроксиапатита // Материаловедение. 2010. № 12. С. 11-15.
- 5. Бакунова Н.В., Комлев В.С., Шворнева Л.И., Федотов А.Ю., Фомин А.С., Баринов С.М., Иевлев В.М., Пономарёв Ю.А., Солдатенко С.А. Влияние термообработки на характеристики нанопорошков гидроксиапатита // Материаловедение. 2010. № 4. С. 21-26.
- 6. Бакунова Н.В., Лапин А.Н., Смирнов В.В., Баринов С.М. Влияние условий синтеза и формования порошков на свойства керамики на основе гидроксиапатита // Перспективные материалы. 2010. № 9. С. 28-32.
- 7. Баринов С.М., Фомин А.С., Иевлев В.М., Бакунова Н.В, Комлев В.С., Ферро Д., Фадеева И.В., Михайлов Б.П., Белоногов Е.К., Смирнов В.В., Федотов А.Ю. Нанопорошки и нанокристаллическая гидроксиапатитовая биокерамика // Перспективные материалы. 2008. № 5. С. 1-7.
- 8. Бакунова Н.В., Баринов С.М., Шворнева Л.И. Влияние температуры синтеза на размер наночастиц гидроксиапатита // Российские нанотехнологии. 2007. Т. 2. № 9-10. С. 102-105.
- 9. Бакунова Н.В., Фомин А.С., Фадеева И.В., Баринов С.М., Шворнева Л.И. Нанопорошки кремнийсодержащих гидроксиапатитов // Журнал неорганической химии. 2007. Т. 52. № 10. С. 1594-1599.
- 10. Баринов С.М., Фадеева И.В., Фомин А.С., Бакунова Н.В., Смирнов В.В. Способ получения наноразмерного порошка на основе системы трикальцийфосфат-гидроксиапатит для синтеза керамических биоматериалов. Патент на изобретение RUS 2367633 05.12.2007.

БЛАГОДАРНОСТЬ

Автор диссертации выражает глубокую благодарность зав. лаб. №20, чл.корр. РАН, проф., д.т.н. Баринову С.М. за руководство работой и постоянную консультацию; академику РАН Солнцеву К.А. за общую поддержку; академику РАН Иевлеву В.М., чл.-корр. РАН Алымову А.И. за общую поддержку и обсуждение; сотрудникам лаборатории № 20 ИМЕТ РАН; сотрудникам ИМЕТ РАН к.ф.-м.н. Шворневой Л.И., Сиротинкину В.П., к.х.н. Куцеву С.В., д.х.н. Каргину Ю.Ф., Лысенкову А.С., Титову Д.Д., Евстратову Е.Е. за обеспечение возможности и помощь в проведении экспериментов и исследований.